Some remarks on Richardson orbits in complex symmetric spaces
نویسنده
چکیده
Roger W. Richardson proved that any parabolic subgroup of a complex semisimple Lie group admits an open dense orbit in the nilradical of its corresponding parabolic subalgebra. In the case of complex symmetric spaces we show that there exist some large classes of parabolic subgroups for which the analogous statement which fails in general, is true. Our main contribution is the extension of a theorem of Peter E. Trapa (in 2005) to real semisimple exceptional Lie groups.
منابع مشابه
Orbit Spaces Arising from Isometric Actions on Hyperbolic Spaces
Let be a differentiable action of a Lie group on a differentiable manifold and consider the orbit space with the quotient topology. Dimension of is called the cohomogeneity of the action of on . If is a differentiable manifold of cohomogeneity one under the action of a compact and connected Lie group, then the orbit space is homeomorphic to one of the spaces , , or . In this paper we suppo...
متن کاملA Poisson Structure on Compact Symmetric Spaces
We present some basic results on a natural Poisson structure on any compact symmetric space. The symplectic leaves of this structure are related to the orbits of the corresponding real semisimple group on the complex flag manifold.
متن کاملRemarks on some recent M. Borcut's results in partially ordered metric spaces
In this paper, some recent results established by Marin Borcut [M. Borcut, Tripled fixed point theorems for monotone mappings in partially ordered metric spaces, Carpathian J. Math. 28, 2 (2012), 207--214] and [M. Borcut, Tripled coincidence theorems for monotone mappings in partially ordered metric spaces, Creat. Math. Inform. 21, 2 (2012), 135--142] are generalized and improved, with much sho...
متن کاملPoisson Structures on Affine Spaces and Flag Varieties
The standard Poisson structures on the flag varieties G/P of a complex reductive algebraic group G are investigated. It is shown that the orbits of symplectic leaves in G/P under a fixed maximal torus of G are smooth irreducible locally closed subvarieties of G/P , isomorphic to intersections of dual Schubert cells in the full flag variety G/B of G, and their Zariski closures are explicitly com...
متن کاملPoisson Structures on Affine Spaces and Flag Varieties . Ii
The standard Poisson structures on the flag varieties G/P of a complex reductive algebraic group G are investigated. It is shown that the orbits of symplectic leaves in G/P under a fixed maximal torus of G are smooth irreducible locally closed subvarieties of G/P , isomorphic to intersections of dual Schubert cells in the full flag variety G/B of G, and their Zariski closures are explicitly com...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Comput.
دوره 75 شماره
صفحات -
تاریخ انتشار 2006